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Abstract 
This paper aims at studying and comparing the performance of typical sparse algorithms for acoustic echo 

cancellation. When the echo path is sparse, the conventional Normalized Least Mean Square (NLMS) algorithm 

suffers from slow convergence. Thus, sparse adaptive filtering algorithms were introduced to overcome the 

convergence problem of adaptive filters in sparse impulse response. To determine the algorithm with best 

performance in echo cancellers, the comparison between these algorithms based on Echo Return Loss 

Enhancement (ERLE) and Mean Square Error (MSE) is carried out using MATLAB. 
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I. INTRODUCTION 
The acoustic echo cancellation problem arises 

due to coupling between a loudspeaker and a 

microphone. This may occur in applications such as 

hands-free telephone and teleconferencing. The 

coupling result in the far-end talker’s signal being fed 

back to the far-end taker resulting in disturbing 

echoes and instability sometimes. The key to 

reducing the undesirable echoes electrically is to 

generate a replica of the microphone signal and 

subtract it from the actual microphone signal [1]. 

This is illustrated in Fig. 1.1.The echo path is 

assumed unknown and time-varying. As a result, the 

adaptive echo canceller has the task of estimating the 

echo path and also keeping track of changes in it [1]. 

 
Fig 1: Echo Cancellation Process 

 

The adaptive filter is the critical part of the AEC 

that performs the work of estimating the echo path of 

the room to get a replica of the echo signal. Adaptive 

algorithms are used to search the optimum ℎ(𝑛). The 

filter ℎ(𝑛) denotes the impulse response of acoustic  

 

environment, ℎ (𝑛) denotes the adaptive filter used 

for cancellation of echo signal. The main aim of 

adaptive filtering technique is to equate the output 

y(n) to the desired output 𝑑(𝑛). The error signal 

𝑒 𝑛 = 𝑑 𝑛 −  𝑦 𝑛  is given back at each iteration, 

so the filter coefficients are changed algorithmically 

to minimize 𝑒 𝑛  known. Calculating the mentioned 

error signal 𝑒 𝑛  is the aim of adaptive filter. 

Adaptive filters works on adaptive algorithms 

according to which they change their coefficients. 

When the filter output obtained is same as the desired 

signal, the echoed signal is cancelled out. 

In the acoustic echo cancellation process, the 

channel of transmission is sparse .This means few 

coefficients are active and others are zero or close to 

zero. Thus echo cancellers must be robust to 

sparseness [5]. Classical adaptive algorithms like 

Normalized least mean square algorithm (NLMS) 

have slow convergence in sparse response because of 

uniform step size across all its filter coefficients. In 

order to improve the convergence problem, the 

proportionate normalized least-mean square 

algorithm (PNLMS) was developed .  

The basic idea behind these proportionate 

algorithms was to update filter coefficients 

independently by adjusting the step size in proportion 

to the estimated filter coefficients [2]. This lead to 

fast initial convergence but in order to improve the 

overall convergence performance, improved versions 

of PNLMS as Improved PNLMS (IPNLMS) and Mu-

law PNLMS (MPNLMS) were developed.  

The IPNLMS performed as a combination of 

both NLMS and PNLMS algorithms with the help of 

a controlling factor[5].This algorithm have shown  

better convergence results  in both and non  sparse 

impulse response. The MPNLMS algorithm 

improved the convergence of PNLMS by choosing 

optimal proportionate step sizes (by taking 

logarithmic values of the coefficients) during 

adaptation process [6]. 
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Section-2 describes what the sparse impulse 

response is. Section-3 gives review of all algorithms 

for echo cancellation such as NLMS, PNLMS, 

IPNLMS and MPNLMS. Section-4 gives the relative 

comparison of computational complexity of all the 

described algorithms Section-5 shows the results, 

observations and comparison of these algorithms on 

the basis of ERLE and MSE.Section-6 defines the 

conclusions and the future work. 

 

II. SPARSE RESPONSE 
A sparse impulse response has most of its 

components with zero or small magnitude and can be 

found in telephone networks. Due to the presence of 

bulk delays in the path only 8-10% exhibits an active 

region [8]. Fig 1.2 shows a typical sparse impulse 

response that can be realized in reality. 

 
Fig 2 -An example of sparse impulse response 

 

Sparse impulse responses are encountered in 

several applications, such as in acoustic and digital 

network echo cancellers.  

The degree of sparseness for an impulse response 

can be quantified as: 

𝜉 𝑛 =
𝐿

𝐿− 𝐿
 1 −

 ℎ(𝑛) 1

 𝐿 ℎ(𝑛) 2
                                     (1) 

and  0 ≤ 𝜉 𝑛 ≤ 1.  

During the conduct of experiments, a sparse 

impulse response generator is used to provide 

synthetic sparse impulse response as described in 

section 6. 

 

III. REVIEW OF ALGORITHMS 
In derivations and descriptions, the following 

notations are used  
 𝑥 𝑛 = Far end signal 

 𝑦 𝑛 = Echo and Background noise 

 𝑥 𝑛 = [𝑥 𝑛 ……𝑥 𝑛 − 𝐿 + 1 ]𝑇  

 ℎ(𝑛) = [ℎ0 ……ℎ𝐿+1]𝑇  True Echo Path 

ℎ  𝑛 = [ℎ 0 ……ℎ 𝐿+1]𝑇  Estimated echo path   

𝑒 𝑛 = 
error signal 

 

3.1 NLMS Algorithm 

NLMS differs from LMS in the way the taps 

weights are updated. The adjustment applied  

iteratively to the tap vector is normalized w.r.t 

squared Euclidean norm. NLMS serves as a reference 

algorithm in echo cancellers. The error signal and the 

coefficient update equation of the NLMS algorithm 

are given by [4] 

𝑒 𝑛 = 𝑦 𝑛 − ℎ 𝑇 𝑛 − 1 𝑥 𝑛                          (2) 

ℎ  𝑛 = ℎ  𝑛 − 1 +
𝜇𝑥 𝑛 𝑒(𝑛)

𝑥 𝑛 𝑥𝑇 𝑛 + 𝛿𝑁𝐿𝑀𝑆

       (3) 

Equation (2) is common for all algorithms.  In 

case of sparse impulse response, this algorithm 

converges very slowly. Thus it fails in providing 

adequate desired signal [3]. 

 

3.2 PNLMS Algorithm 

In this algorithm, an adaptive individual step-

size is assigned to each filter coefficient. The step-

sizes are calculated from the last estimate of the filter 

coefficients in such a way that a larger coefficient 

receives a larger increment, thus increasing the 

convergence rate of that co-efficient [2]. This has the 

effect that active coefficients are adjusted faster than 

non-active coefficients (i.e. small or zero 

coefficients).Hence, PNLMS converges much faster 

than NLMS for sparse impulse responses (i.e., 

responses for which only a small percentage of 

coefficients is significant). However, this fast 

convergence was seen only for initial phase [7]. 

For an adaptive filter, PNLMS algorithm is 

presented as 

ℎ  𝑛 

= ℎ  𝑛 − 1 +
𝜇𝑄 𝑛 − 1 𝑥 𝑛 𝑒 𝑛 

𝑥 𝑛 𝑄 𝑛 − 1 𝑥𝑇 𝑛 + 𝛿𝑃𝑁𝐿𝑀𝑆

  (4) 

𝑄 𝑛 − 1 = 𝑑𝑖𝑎𝑔 𝑞0 𝑛 − 1 , . . , 𝑞𝐿−1 𝑛 − 1    (5)   

 

  𝑞𝑙 𝑛 =  
𝑘𝑙(𝑛)

1
𝐿
 𝑘𝑖(𝑛)𝐿−1

𝑖=0

 ,       0 ≤ 𝑙 ≤ 𝐿 − 1        (6) 

  𝒌𝒍 𝒏 = 𝒎𝒂𝒙 𝝆𝒎𝒂𝒙 𝜰𝒑,  𝒉 𝟎 ,  𝒉 𝟏 , …  𝒉 𝑳−𝟏    (7) 

𝑎𝑛𝑑  𝛿𝑃𝑁𝐿𝑀𝑆  = 𝛿𝑁𝐿𝑀𝑆  /𝐿                                       (8)                                             

In this algorithm, a time varying step-size control 

matrix 𝑄 𝑛 − 1 , whose elements are roughly 

proportional to the absolute values of the 

corresponding coefficients, is included in the update 

equation [4]. Equations (3), (4),(5) are common for 

all proportionate algorithms. As a result, the large 

coefficients at a given iteration get significantly more 

update energy than the small ones. The parameter  𝜇 

is a fixed step-size factor,  is a small constant needed 

in order to avoid division by zero, and ρ and 𝛿 are 

small positive constants which are important when all 

the coefficients are zero (such as in the beginning of 

the adaptation process) or when a coefficient is much 

smaller than the largest one [6].  

 

3.3 IPNLMS ALGORITHM 

In this a controlling factor α is introduced in the 

diagonal step size control matrix. This factor helps in 

switching between NLMS and PNLMS algorithms. 
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The IPNLMS algorithm chose the elements of 

 𝑄 𝑛  as: 

 𝑞𝑙 𝑛 =  
1 − 𝛼

2𝐿
+  1 + 𝛼 

 ℎ 1 𝑛  

2 ℎ  𝑛  
             (9) 

     For α = -1, IPNLMS behaves like NLMS and  

when α = 1, it behaves like PNLMS. For fast 

convergence, favorably this value is kept as 0,-0.5 or 

-0.75. Also the computational complexity of this 

algorithm is very high [3]. 

 

3.4  MPNLMS ALGORITHM 

In the μ-law improved proportionate normalized 

least mean-square (MPNLMS) algorithm, the step-

sizes are optimal in the sense of minimizing the 

convergence rate (considering white noise input 

signal) [5] The resulting algorithm employs a 

nonlinear (logarithm) function of the coefficients in 

the step-size control. Instead of using magnitude 

directly the logarithm of magnitude is used as step 

gain of each coefficient. It consistently converges to 

steady state for sparse impulse response. 

The diagonal elements of 𝑄 𝑛  in MPNLMS are 

chosen as in PNLMS but the difference lies within 

 𝒌𝒍 𝒏    : 
 

  𝒌𝒍 𝒏 =

   𝒎𝒂𝒙 𝝆𝒎𝒂𝒙 𝜰𝒑, 𝑭 𝒉 𝟎 , 𝑭 𝒉 𝟏 , … 𝑭 𝒉 𝑳−𝟏       (10)

                                                                           

𝐹 ℎ 𝑙 𝑛  =
ln 1+𝜇 ℎ 𝑙 𝑛   

ln 1+𝜇 
                                         (11) 

         Though it improves the convergence rate but the 

computational load increases and mu-law is defined 

only in [0,1].If the magnitude of coefficients falls out 

of this range then this algorithm fails [5]. 

 

IV. PERFORMANCE MEASURES 
One of the performance measures for echo 

canceller is ERLE. It measures the attenuation of the 

echo signals in an acoustic echo cancellation system. 

Higher ERLE corresponds to higher reduction in 

echo. It is expressed in decibels (dB) and calculated 

as 

𝐸𝑅𝐿𝐸(𝑛)  = 10𝑙𝑜𝑔10
𝑦2(𝑛)

𝑒2(𝑛)
𝑑𝐵                        (12) 

    Another measure of performance is MSE. It gives 

the expected value of square of error. The lower MSE 

value is favorable. The formula for calculation of 

MSE is: 

𝑀𝑆𝐸(𝑛) = 𝐸 𝑒2 (𝑛)        (13) 

 

V. COMPUTATIONAL COMPLEXITY 
The relative complexity of  the NLMS, PNLMS, 

IPNLMS and MPNLMS in terms of total 

additions(A), multiplications(M), divisions(D), 

logarithms(Log) per iteration is given in Table-I. 

 

Table-I Relative Complexity of Algorithms 

Algorithm A 

 

M D Log 

 NLMS L+3 L+3 1 0 

PNLMS 2L+1 5L+2 2 0 

IPNLMS 3L+2 5L+2 2 0 

MPNLMS 3L+1 6L+2 2 L 

 

As we can see from the table that the increase in 

complexity is compromised by the algorithm’s 

performance [8].Depending on the particular 

application, the tradeoff between performance and 

complexity can be decided upon. 

 

VI. SIMULATION RESULTS 
The simulation is performed using synthetic data 

via MATLAB. The MSE and ERLE values for all the 

algorithms are plotted. In simulation the input source 

signal 𝑥(n) is filtered through the built in FIR filter 

using the generated impulse response ℎ(𝑛).A white 

Gaussian noise 𝑤(𝑛) with 30dB SNR is added to the 

filtered signal to obtain the output signal 𝑦(𝑛).The 

source signal 𝑥(𝑛) is now fed as input the adaptive 

filter whereas 𝑦(𝑛) is used as the desired signal. The 

adaptive filter with 256 taps is used. The adaptive 

process is repeated 10 times and averaged over 100 

blocks to obtain the ensemble average of the MSE 

and ERLE values. The step size parameter 𝜇 is kept 

0.4 for fast convergence. 

The sparse impulse response is generated 

synthetically using method proposed in [5]. It 

expresses the sparse impulse response as : 

ℎ 𝑛 =   
0𝐿𝑝∗𝐿𝑝

0𝐿𝑝∗𝐿𝑢

0𝐿𝑢∗𝐿𝑝
𝐵𝐿𝑝∗𝐿𝑝

 𝑢 +  𝑝                     (14) 

where vector u is defined as 

  𝑢𝐿∗1 =   0𝐿𝑝∗1
  1   𝑒

−1

𝜓     𝑒
−2

𝜓   … 𝑒
−(𝐿𝑢−1)

𝜓      
𝑇

  (15) 

 𝐿𝑝 models the bulk delay. 𝐿𝑢 = 𝐿 − 𝐿𝑝  is the length 

of the decaying window controlled by 𝜓. Smaller the 

 𝜓, more sparse is the system.  Here impulse length L 

is set 256, bulk delay Lp =20 and ψ=8. The constant 

𝑝 is zero mean white Gaussian noise vector with 

length L. 

Fig 3 shows the comparative plot of average 

MSE for all the sparse algorithms. Fig 4 shows the 

comparative plot of average ERLE for all the sparse 

algorithms. Each algorithm’s output is represented by 

different colored line in the graphs.  Fig 5 shows the 

generated sparse impulse response for which for 

which the comparison of the different echo 

cancellation algorithms is made. 
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Fig 3: Plot of MSE for four different algorithms 

 

 
Fig 4: Plot of ERLE for four different algorithms 

 

 
Fig 5: The generated sparse impulse response 

 

VII. CONCLUSION 
This paper aimed at finding the best sparse echo 

cancellation algorithm in the terms of performance 

measures i.e. ERLE and MSE. The simulation results 

show that for sparse systems, MPNLMS gives lowest 

values of MSE and the highest values of ERLE. 

Thus, MPNLMS gives the best performance in 

terms of the measures MSE and ERLE as compared 

to other sparse adaptive filtering algorithms but at the 

cost of increased computational complexity. NLMS 

performs badly in sparse systems. However all these 

sparse algorithms have slow convergence rate during 

dispersive impulse response. The future work will be 

directed to algorithms that work well in time varying 

impulse response. 
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